

Est. 1922

BRITISH MODEL FLYING ASSOCIATION THE R/C ACHIEVEMENT SCHEME

TEST STANDARDS for CHIEF EXAMINERS and CLUB EXAMINERS GUIDANCE for TEST CANDIDATES

> THE MULTI-ROTOR CERTIFICATES (Basic Proficiency, A & B)

> > 2023 ISSUE

(Mar 2023)

(Jan 2022)

The Achievement Scheme Review Committee strongly recommends taking the "online" BMFA Registration Competency Certificate (RCC) in advance of the test.

This RCC test is updated in line with legal requirements, which helps to ensure all model pilots are both informed and current and is standardised for all candidates.

As a test candidate if you can evidence a pass of the latest RCC version to the examiner there will be NO requirement to answer the 5 mandatory questions.

Achievement Scheme Information & Communication

The BMFA Achievement Scheme provides every RC flyer the opportunity to set themselves an achievement target to aim for, and then have their progress assessed and confirmed by an examiner.

It is important that All those involved in training, examining and preparing for the tests, are well informed and up to date with all that the scheme has to offer. To this end, and to aid communication, important information regarding scheme developments, as well as details of all of the tests and their associated guidance documents, are made available to everyone via a number of sources, which include:-

- The Achievement Scheme website http://achievements.bmfa.org/
- The BMFA website http://bmfa.org
- The BMFA News
- The Achievement Scheme closed Facebook group

It's important to appreciate that **ALL** of the scheme documents are reviewed and updated on an annual basis. Whichever document you are using, you will know if you have the right one, simply by looking at the date on the front cover. If it's not dated with the current year, it's the wrong one!

Most BMFA Clubs have Club Instructors/Examiners who will be familiar with the scheme and what is expected of anyone thinking of participating. If your club does not have a club examiner then each BMFA Area has an Achievement Scheme Coordinator (contact details can usually be found on the BMFA Area website) who can usually help in coordinating tests, or answering queries about tests etc. All BMFA Areas have Area Chief Examiners who would normally undertake Club Examiner tests, but are also available to help out with club tests, if requested. Importantly, they are also very knowledgeable about the scheme and its requirements. Area coordinators can often find an ACE that is close to your club, if you are having difficulty arranging for a test.

All BMFA Achievement Scheme & training documents are available to download from the BMFA Achievement Scheme website <u>http://achievements.bmfa.org/</u>. You can also register your email address with the Achievement Scheme website and receive email notification of any news flashes, notification of scheme events and updates to documentation etc. as soon as they are published.

The Achievement Scheme also has a closed Facebook group (you just have to apply to be included) where comment and queries can be posted and examiners/instructors and members of the Achievement Scheme Review Committee can answer questions, or offer clarification.

If you have any query about the scheme or constructive comment on the scheme you can contact the Power/Silent Flight Scheme Controller (<u>RCPAS@bmfa.org</u>), or the Achievement Scheme Review Committee, via the BMFA Office.

General

The Achievement Scheme is run by the BMFA as a National Scheme and it is open to all model flyers. Where a non-member wishes to participate in the achievement scheme the examiner who will be conducting the test must inform the BMFA office via email or telephone no later than the day prior to the test being carried out of the non-member's full name, address and the date that the test will be conducted. This enables the BMFA to extend insurance at suitable levels for the day of the test. If this procedure is not followed the test will be invalid.

The RCAS - Multi-Rotor Certificates

The examination for a 'BPC' or A Certificate may be taken on application to any Registered Examiner.

The examination for a 'B' certificate may be carried out by:

- (a) Two Registered Examiners (the 'lead' must be a Helicopter or Multirotor Examiner).
- (b) A Helicopter Chief Examiner or Multirotor Chief Examiner

The candidate must successfully complete the test schedules in one attempt. A maximum of two attempts at the examination are permitted in any one day.

Legal Responsibilities

Only pilots with a suitable model that are operating legally are eligible to take the test.

There are clearly defined legal requirements for the operation of Small Unmanned Aircraft (model aircraft), from passing a CAA (or BMFA) legal & safety knowledge test before piloting a model, to registering with the CAA as an SUA Operator (can also be done via the BMFA) if the pilot is also the owner and operator of the model aircraft, then ensuring the SUA Operator identity number is appropriately attached to the model. There are also restrictions on where a model can be flown and the heights and distances from people, property, vehicles or structures that the model can be operated. Finally, there is a legal requirement to operate the model safely e.g. ensuring the model is 'fit for safe flight' and the pilot is in a fit state to undertake that flight, as well as the site and weather conditions being suitable.

The test schedule is split broadly into five areas; the pre-flight safety checks, moving from the pits/start-up area to the take-off/landing area, the flying manoeuvres, the continuity & return to the pits, and the questions.

Basic Proficiency Certificate (BPC) & 'A' Certificate

The 'BPC' is a measure of flying ability and safety which "may be equated to a safe solo standard of flying" for aircraft that do not meet the requirements for the 'A' certificate.

The 'A' Certificate is a measure of flying ability and safety which "may be equated to a safe solo standard of flying" and an increasing number of clubs use it as their 'solo' test.

The test for the BPC is exactly the same as that conducted for the 'A' test, however there is a specific test form for each test, which are available from the office and can also be downloaded from the Achievement Scheme or BMFA website downloads page.

As an Examiner, the level of competence you should expect of a candidate should be based on that criterion; that is 'is this person, in your opinion, fit to be allowed to fly unsupervised'.

Also be aware that you may ask questions on any local site rules that the candidate should be aware of and these may form an important part of the test questions you ask.

The candidate should have studied the BMFA Member's Handbook and the associated Annexes and safety codes. As well as being an excellent guide to the safe flying of model aircraft, most of the questions asked at the end of the test will be from these sources.

Remember that the Member's Handbook and associated annexes etc. are now 'active' documents published on the BMFA website. <u>https://handbook.bmfa.uk</u>

Also be aware that you may ask questions on any local site rules that the candidate should be aware of and these may form an important part of the test questions you ask.

The 'B' Certificate

The 'B' Certificate is "designed to recognise the pilot's more advanced ability and a demonstrated level of safety which may be considered by an event organiser as suitable for flying at a public display."

As an Examiner, therefore, the level of competence required from a candidate should firstly be based on the question; 'has this person demonstrated their flying ability and safety to me in a satisfactory manner' and, secondly, 'how do I feel about them appearing in public, possibly at a large display, on the strength of the certificate which I may be about to award them'.

The aim of the 'B' certificate has always been to give the club flyer a personal attainment goal beyond the 'A' Certificate; a demonstrated level of competence and safety, which is attainable by the average pilot with a little thought and practice.

For many years the 'B' Certificate has been seen by some as a 'display licence' but, whilst it certainly has its uses in the context of displays, it has always been much more than that. It was set up in the first place as a method of encouraging club flyers to gain further flying skills by meeting and being tested to a recognised national standard and this is still it's main function.

The long term strategy behind this is that if enough club flyers qualify for their 'B' certificates then the general standard of flying both within your club and nationally cannot help but rise. Examiners should be pressing this concept positively within their clubs and discouraging the idea of the 'B' as 'just a display licence'.

A candidate wishing to take the 'B' must already have passed the 'A' in that discipline.

However where a candidate presents for a B test who does not already hold an 'A' certificate it is acceptable for the candidate to complete the flying portion of the 'A' test successfully and then move immediately to the flying portion of the 'B' test before attempting the test questions.

If the candidate passes the 'A' flying test but fails the 'B', then you should ask the 'A' questions. If the candidate passes both the 'A' and the 'B' flying tests, then you should ask the 'B' questions.

Note that the 'A' flying test does not finish until the model has been retrieved and the post flight checks have been completed.

Outdoors

The test may not be flown indoors. It was designed to be flown outdoors and the text of the test manoeuvres highlights this. It is important to remind candidates that their ability to cope with various wind conditions is an integral part of the test.

The Model

The tests can be performed with virtually any model multi-rotor, fixed pitch or collective. A multi-rotor for the benefit of this test is defined as a rotorcraft with three or more rotors. Whatever model is brought by the candidate, it must be suitable to fly the manoeuvres required by the test they are taking. You do not have the authority to alter the required manoeuvres to suit a model and if, in your opinion, the model is unsuitable for the test then you should explain this to the candidate and tell them that they cannot use that model. The selection of the model to do the test is the responsibility of the pilot and it is their ability you are testing, not the model.

On no account may the candidate use defects or limitations in the performance of the model as an excuse for poor performance on their part and you should make no allowance on this point. The type of model presented cannot be used as an excuse for not completing certain manoeuvres.

Electric Powered Models must be treated as LIVE as soon as the main flight battery is connected, irrespective of radio state and great care must be demonstrated by the candidate. The arming sequence should be clearly understood and discussed/demonstrated to you by the candidate.

Buddy Box Systems

Buddy leads and other dual control training aids must not be used during any achievement scheme test.

Gyros, Electronic Stabilisation and GPS

It is acceptable to use an electro-mechanical or solid state gyro/s in a multi-rotor being used to take the test although **electronic stabilisation is restricted to enabling flight, at no point should the stabilisation effect take over control from the pilot or achieve automated or self levelled flight**. This allows a range of gyros to be fitted, from simple yaw dampers to solid

The RCAS – Multi-Rotor Certificates

state heading lock units.

The use of any autopilot and/or artificial stability features which are (or may be) designed into such units beyond definition above is not acceptable during the test for the 'A' and 'B' certificates and is not permitted, however for the 'BPC' only it is acceptable to have self levelling activated.

Candidates should be prepared to explain the capabilities of the system they are using and show that it does not take over control from the pilot and that automated flight will not be achieved during the test.

GPS must not be used during any test.

Whether the candidate takes a **BPC** or an 'A' cert depends entirely on what model they present for the test with;

- If the candidate presents with a model where the electronics are only "enabling controllable flight" they will take the 'A' test.
- If the candidate presents with a model where extra electronic stabilisation over and above that required to enable controllable flight they will take the BPC

Height and Speed

The 'BPC' & 'A' certificate candidate should be a reasonably confident pilot, even though they may have been flying multi-rotor for only a few months. Flying too high or too low is not the mark of a confident pilot. The test should be flown at the heights specified in the individual elements with little deviation.

The two manoeuvres in the 'A' certificate test require slightly different speeds as will be explained on the manoeuvre descriptions.

The 'B' certificate candidate should be a confident pilot, and this should show in the height and speed at which they fly the test. The hovering parts of the test should be flown with the model at 10 feet. The flying sections should typically be completed at a height of between ten and twenty five metres (roughly one to two houses high). The pilot should show good use of the controls to maintain a constant height throughout each of the separate elements of the test and transitions between various heights should be smooth and steady. Height selection and accurate height control are factors you should attach some importance to.

Wind Direction

There is no requirement for the fixed positioning of manoeuvres relative to the wind direction in the Multi-rotor tests and you will find no reference to the wind in the text of either the test or this Standards Document.

This makes it absolutely ESSENTIAL that you discuss this with the candidate at length so that you are both aware of exactly how you want the manoeuvres to be presented and what limitations will be accepted if the wind direction is not favourable.

Consistency

Good use of the controls should ensure that the model stays at a constant height, and moves at a steady speeds suitable to each of the separate elements of the test. All deviations from these constants should be noted, and will form part of the judgment of the test.

Unnecessary varying of height and inconsistent lines are valid reasons to fail a candidate at

The RCAS – Multi-Rotor Certificates

this level as they give a good indication of the flyer's general level of competence and they must strongly influence your final decision. Poorly flown height or lines are a sure sign that the flyer has either not practiced the test or has not reached the required standard of flying and are legitimate reasons to fail them.

Continuity

For the 'BPC' and 'A' test the manoeuvres are set out in such a way that they are flown one after the other as a short sequence. You should discuss with the candidate before the flight the way in which you would like the various elements flown and the candidate should have a good knowledge of the test before the event. If the candidate is very hesitant during the test and is not capable of following the set sequence then you might conclude that they have either not had enough practice or that their basic flying skills are not yet well enough developed.

For the 'B' test, although the manoeuvres are set out in such a way that they can be flown one after the other as a schedule, this is ABSOLUTELY NOT what is required. The candidate may opt to fly the test in that manner but it is not mandatory. However, the manoeuvres must be flown in the order specified for the test i.e. (a), (b), (c) etc. – see individual test checklist. Most flights will have a combination of transitions and positioning circuits between the various elements and you should note any additional flying for positioning etc., just as carefully as the rest of the flight, as this can say much about the competence of the pilot.

A pilot who transitions directly from one manoeuvre to the next is not to be penalised as this is quite acceptable, but watch out for the pilot who is not sufficiently practiced. Flying some of the manoeuvres in this manner can get them into some very awkward positions. The candidate should have a good knowledge of the test before the event.

It should be possible to fly the test on one tank of fuel or flight battery but If the model does have to be refuelled or the flight battery changed then the pilot must clear this with you before the test starts as required by the test procedure. It is allowable only once during the test and anything the pilot does during this time must be considered by you to be part of the test. This includes the way they land, retrieve, carry out and take off. With I/C models the correct refuelling and start procedures must be used, For electric models, isolating the flight battery before carrying the model in and not re-connecting until the model has been carried out to an appropriate safe point are important.

Trim

It is expected that the candidate will start the test with a model that has been trimmed out previously but, if necessary, they should be able to trim the model out relatively quickly. If you see obvious signs that the model is out of trim and the candidate makes no attempt to rectify the matter, you may well question their basic competence. On the other hand, if they do need to re-trim and are making attempts to do so, you should make allowances for a short time of flight with a somewhat erratic path. This should not be penalised unless it puts the model in any dangerous situations or unless the model flies behind the pilot or into any other unsafe area. If the pilot does use the first part of the flight as a trimming exercise, they should be required to land as soon as they are satisfied with the trim and the test should then commence at manoeuvre (b). If a flight is abandoned prior to starting manoeuvre (b) because of trim problems it will not count as a test flight attempt.

Nerves

Quiet competence is what you are looking for during the flight, but most candidates may well be nervous and you should make some allowance for this. If the flyer is very nervous you should seriously consider abandoning the test for the time being and arranging a coaching flight or two to settle the candidate down before re-taking the test. This can be done on the same day and can really help those candidates who have trouble with nerves when flying in a test situation.

Repeating Manoeuvres

At 'BPC' and 'A' certificate level the manoeuvres are simple and the candidate should be competent to fly them with very few errors. At 'B' certificate level the candidate should be competent to fly the more advanced manoeuvres in the test with very few errors. If you see any major faults the test should be taken again. It may be, however, that the candidate will make a **minor** mistake on a manoeuvre and if you are not fully satisfied with what you have seen you should consider asking for the manoeuvre to be repeated.

Some judgement is called for on your part here. A major mistake is grounds for failing the candidate, especially if loss of control has occurred or a dangerous situation has arisen. You should definitely not let them have multiple attempts at each manoeuvre until they get it right but you must give yourself the best chance of assessing the competence of the pilot you are testing.

You should consider what you have seen the model do and if you think to yourself "could be better" than a request that the manoeuvre be repeated may be considered. Be extremely careful about using this option, however, as you could very easily be degrading the worth of the test. It must not, under any circumstances, degenerate into a series of 'practice' manoeuvres.

Repeating the test

The rules allow two attempts at the test in one day and if the candidate fails the first of these you must consider their performance in deciding what to do next. Many failures will be reasonably good or borderline cases and in these circumstances it may be appropriate to arrange one or two coaching flights before repeating the test. Remember that many of the candidates will be unfamiliar with flying under pressure and might do very well on the second test.

However, it will probably be obvious to you on many occasions that the pilot you are testing is simply not ready for the test they are taking. In this situation it is better that you tell them so quite clearly. It could then be extremely useful for you to arrange a demonstration test for them so that they can gain an understanding of the standard of flying that is required, especially if they are not clear about the manoeuvres and the positioning for them. This, possibly with a little coaching, is far more useful to everyone than simply telling the candidate that they have failed.

A flight which is abandoned for any reason prior to starting manoeuvre (b) will not count as a test flight attempt

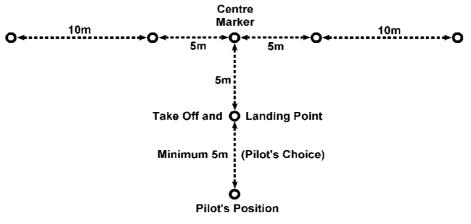
Interruptions to the Test

A possibility that may occur during a test is a motor failure part way through, which with multirotors could very well lead to a damaged model. If this is the case then the test obviously cannot continue and you should invoke the rule that the test should be performed in one flight and count the flight as one of the two attempts allowed during the day.

Genuine motor trouble or even motor-out situations during the test may be dealt with in one of three ways.

If the test was being generally flown in a satisfactory manner and the problem can be rectified quickly then the candidate may be allowed to continue the test from the start of the manoeuvre in which the problem occurred.

If the problem cannot be rectified quickly but you consider that it was a genuine unforeseen occurrence, you may annul the test and not count it as one of the two attempts.


If the test up to the point of failure was not satisfactory, you have the option to cancel the rest of the test and count the flight as one of the two attempts allowed during the day.

Obviously, you will have to use your judgment on this matter as there will rarely be black and white situations but how they handled the emergency should be of great interest to you when you come to review the candidate's overall standard of flying.

Ground Positioning

When taking a multi-rotor test, it is your responsibility as the Examiner to lay out a series of ground markers to assist both the candidate and yourself to assess the manoeuvres being flown. Small cones or any other similar marker may be used as long as they don't interfere with the flying of the model. However, it is vital that the marker used for the take off/landing point (TOLP) does not affect the model at all and probably the best marker in this case would be something like the fluorescent discs that lay flat on the ground. Alternatively, you could use some of the biodegradable ground marker spray paint that is readily available.

The layout of markers required is shown below and it must be emphasised that absolute accuracy of distance is not required when setting them out. Pacing will be quite accurate enough. It is essential, though, that the centre marker, the TOLP and the pilot's position are in line.

GROUND POSITIONING MARKERS

The general positioning of the markers will depend very much on the geography of the flying site and safe operation of the model and you should set them out with these factors in mind.

It is not a requirement that the markers in the cross bar are used by the pilot but they are there to help. However, the centre marker, the take off/landing point and the pilot's position must be used with some accuracy.

The RCAS – Multi-Rotor Certificates

Landings should generally be no more than a metre from the take off/landing point and the pilot is expected to stay close to the selected pilot's position mark although it is not required that they 'plant' their feet. If you feel that the pilot is starting to wander, you should stop them and insist that they stand near the pre-selected mark.

Remember that it is a requirement that 'all manoeuvres are carried out in front of the pilot' so the use of the pilot's position point will be important.

General Manoeuvres and Hovering

All take-offs and landings should be smooth, without undue oscillations, and lifts and descents should be straight and controlled with the model a comfortable and safe distance in front of the pilot. In any stationary hovering the model should remain steady and should not oscillate unduly.

The standard 'brief' hover time is about five seconds. You should discuss this with the candidate before the test so that they know that you will want to see a positive stop with the hover long enough to show that the model is well controlled and steady with little wandering or oscillation. Stopwatch accuracy is not required.

The candidate should also be aware that the decision to move on is theirs and that you will not be asking them to commence with the next manoeuvre. However, during your pre-flight briefing, they may ask that you indicate when you are satisfied that they have completed their 'brief' hover times to help them decide when to move on. This is quite permissible if requested by the candidate.

Circuit and other 'flying' manoeuvres should be performed at the heights mentioned in 'Height and Speed' above. Movement of the model from one point to another whilst in the hover should be done at a steady walking pace.

Care should be taken in the flying manoeuvres that the line of approach and height each time is consistent and you should take particular note of performance in this area.

Intermediate Landing

Exceptionally, at a pre-determined point in the flight an intermediate landing may be permitted for the sole purpose of the fitting of a freshly charged flight battery. This landing may only be made with the prior consent of the Examiners. The pre-determined point may be either after a specific manoeuvre or at a specific time of flight, whichever is requested by the candidate and agreed by the Examiners.

Full pre and post flight checks are not normally required during an intermediate landing and take off unless the model suffered a hard landing. However, the candidate should give the model at least a quick visual examination whilst on the ground.

Helpers for Disabled Candidates, Young Candidates and Others who have Requested Help During the Test

When disabled or young candidates present themselves for the test it may be that they will not physically be able to perform all the actions that most candidates can. At times, other candidates may also request help with certain physical aspects during the test (they may, for instance, have an injured finger). There will be times when you, as an Examiner, will think 'how much can I relax the test requirements for this person'.

Some Examiners make the decision to make no allowances at all but this effectively bars many people from attempting the tests. If we think of the achievement scheme as a true national scheme then we must consider how we can accommodate candidates, not how we can stop them from participating.]

The answer, of course, is that you, as an Examiner, must make on-the-spot decisions about what you will allow during the test and, in such cases, you are within your authority to take such decisions. The guidelines set out below may help but at all times the two items at the end of this section must take precedence. They are not negotiable and mean that, whoever the candidate is, they have to convince you that they know what they are doing or what is happening for the full duration of the test.

For instance, a disabled flyer may have difficulty handling the model and may not be able to carry it out to the strip, release it for launch or retrieve it after the flight. The sensible use of a helper is certainly allowable in such cases but it is essential that they only do what the candidate asks them to do. Pre-flight checks and engine starting may be another problem area that can be overcome by a helper but you should expect the candidate to do as much of the work as possible themselves and they should be able to talk you through anything that the helper does for them. Be sure to discuss all this with the candidate before starting the test.

All of these comments can apply to younger flyers too but there is an added complication with engine starting. Many parents are very unhappy about letting their children near a running engine and will not allow them to start their own engines. This is a perfectly valid view and, again, is a case where a helper can be used. If this situation does occur with the younger candidates, however, you should insist that they do all the pre-flight and preparation work themselves, up to applying the starter to the engine. If they cannot do this then they should not pass.

After engine start, the helper can adjust engine controls and carry the model but only on the instructions of the candidate.

In all cases:

(1) If, at any time, the helper takes over the decision making process from the candidate then the candidate must fail.

(2) You can make no allowances whatsoever for anyone during the flying of the test. The candidate can either perform the flight manoeuvres as specified or they can't. If they can't then they must not be passed.

Make sure in your briefing that both the candidate and the helper are fully aware of both of these points.

(a) Carry out pre-flight checks as required by the BMFA safety codes and demonstrate an understanding of 'SWEETS'.

The candidate must demonstrate their understanding of risk assessing a site for flying by talking through SWEETS as described in the Member's Handbook. A candidate must be expected to be able to demonstrate how they have come to the decision it is safe to fly at the location, which must still be applied even if the site is an established flying site.

The candidate must demonstrate the model's failsafe, which as a minimum should be set as 'throttle to idle' upon loss of control signal. The candidate must ensure this is done safely following the guidance in the Member's Handbook. A candidate must be failed immediately if the candidate does not make the model 'safe' by means of either a suitable restraint or removing components that might spin uncontrollably such as propellers or blades.

If the failsafe does not work when tested for any reason, then the test must be considered a failure.

The pre-flight checks are laid out clearly in the BMFA handbook. Ask the candidate to go through their checks as if the test flight was their first flight of the day. Particular attention should be given to airframe, propeller, control linkages and surfaces.

Points to look for are that the candidate has a steady and regular ground routine, especially when starting and tuning the engine. Nerves should not play a part in the pits, and you should satisfy yourself that the candidate is in full control of what they are doing whilst preparing the helicopter for flight.

A tidy flight box and a neat ground layout makes a good impression but bear in mind that that 'A' certificate candidates may not have been flying for too long and you should make allowances.

A poor performance in this area is not direct grounds for failing the candidate but can certainly be part of a cumulative fail if other aspects of the performance are below the standard you expect.

Pay particular attention to the way the candidate uses the local frequency control system and make sure that they fully understand it and use the correct sequence appropriate to their model. For 35 MHz, this is usually 'get the peg, Tx on, Rx on'. For 2.4 GHz, the candidate should be aware of any local transmitter usage limitations and if a flight peg is required, it must be obtained before the usual Tx on, Rx on sequence. Some radio equipment and, occasionally, a specific model requirement requires that the Rx be switched on first and, if this is the case, the candidate should explain this clearly to you.

With electric powered models, take note that the candidate is aware that the model is 'live' as soon as the flight battery is plugged in and that they take appropriate safety precautions. If a separate receiver battery is fitted, the candidate should have the opportunity to check the operation of the radio equipment before the flight battery is plugged in.

Watch carefully and take note that the transmitter controls, trims and switches are checked by the pilot.

All candidates are required to be aware of the local the frequency control system and anyone who is required to use it but switches their radio on before doing so should be failed on the spot.

Electric powered models must be carried out from the pits area to a safe point before the flight battery is connected and they MUST be considered live as soon as the flight battery is plugged in. Great care should be taken at this point and any help available to the candidate should be used in the interests of safety.

If there is no one else available then there is nothing to stop you aiding the candidate by, for instance, carrying the model to the test area etc. but any such actions must be performed by you directly on the instructions of the candidate. You must not prompt them or carry out any actions of your own accord.

It is important that you talk these points over with the candidate in you pre-flight briefing.

(b), (c), (d), (e), (f) and (g) together form a horizontal 'T'.

During the course of manoeuvres (b), (c), (d), (e), (f) and (g) the model should not have deviated significantly from a straight line drawn between the end points Slight drifting may be permissible in adverse wind conditions, but should be rapidly corrected and put back on the correct course. If the deviation is severe, or the model does not follow the line at all, the candidate should not pass. The hovering speed between the end points is at the discretion of the candidate but must be no faster than a slow walk.

Each stop should be a controlled hover, with any movement being quickly checked, without signs of large over-corrections. The pauses at each hovering point should be about five seconds, other than in (b).

The height of the multi-rotor should be consistent throughout these manoeuvres with no major deviations.

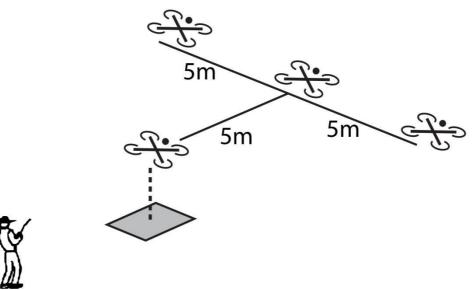
(b) Take off and hover over the take-off point, with the multi-rotor at approximately 10 feet, for about twenty seconds and then land.

Take off should be smooth and the lift to 10 feet should be vertical, straight and controlled with the model a comfortable and safe distance in front of the pilot. Once at 10 feet the model should remain stationary and should not oscillate unduly. You should notify the candidate when the hover time of about twenty seconds has passed and ask him to commence with the next part of the manoeuvre. The descent and landing should be smooth and steady with little oscillation on touchdown.

(c) Take off and hover for about five seconds, then hover the multi-rotor slowly forwards for approximately five metres, stop, and hover for about five seconds.

After the take off and five seconds hover time and, on your command, the pilot now hovers the model forward, at a slow hovering pace, for a distance of about five metres then stopping and hovering for about five seconds. All the previous comments about line, height at approximately 10 feet, speed and steadiness apply and the orientation of the model should still be facing in the same direction as this initial forward hover, as for all the rest of the first set of manoeuvres.

(d) Hover the multi-rotor slowly sideways for approximately five metres, stop, and hover for about five seconds.


The pilot may choose to perform the initial sideways hover in either direction (to his left or right) and, once you have been told the direction, the candidate should, without turning the model, commence a sideways hover at a height of approximately 10 feet for a distance of approximately five metres. Having travelled about five metres the pilot will stop the model and hold it in a steady hover at 10 feet and, with the rear of the model pointing in the same direction as it was when it took off, for about five seconds

(e) Hover the multi-rotor slowly sideways in the opposite direction for approximately ten metres (five metres past its original position in front of the pilot), stop, and hover for about five seconds.

At the end of the hover time the pilot, without turning the model, will hover it sideways in the opposite direction, passing in front of them and stopping 5 metres past the centre line. At this point the pilot will once again stop and hover the model with it still facing in the same direction as it was at take-off.

(f) Hover the multi-rotor slowly sideways in the first direction to bring it back to its original position in front of the pilot, stop, and hover for about five seconds.

The candidate should, without turning the model, commence a sideways hover at approximately 10 feet for a distance of approximately five metres back to the centre marker. Having travelled to the centre marker the pilot will stop the model and hold it in a steady hover for about five seconds at approximately 10 feet and, with the rear of the model pointing in the same direction as it was when it took off.

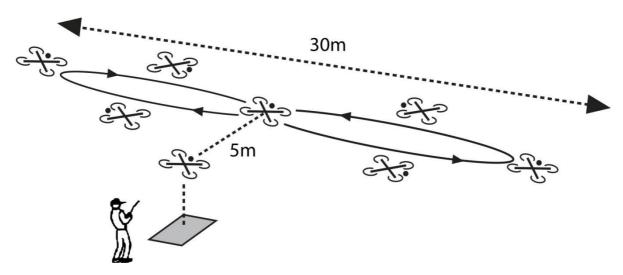
(g) Fly slowly backwards, bringing the multi-rotor back to its original position over the take off point, stop, hover for about five seconds and land.

After hovering for about five seconds, the model is hovered backwards (without turning it) to the start position, stopped and hovered for about five seconds above the TOLP with skids at approximately 10 feet. After the hover time has been completed the model should descend and land close to the original take off point. During this last section, you will be observing the same criteria as previously and the model should have performed as before in relation to the course and at a similar speed. The descent and landing should be smooth and steady with little bouncing on landing, caused by not being level or poor throttle control.

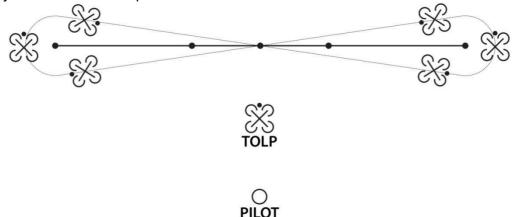
(h) Take off and fly slowly forward for approximately 5 metres, stop and hover for about five seconds. Turn 90 degrees either left or right and fly forward to perform two 'lazy eights', each at least 30 metres in length. Each time the multi-rotor passes in front of the pilot it must be sideways on to the pilot and throughout the manoeuvre the model must be flying forward, not sideways.

The pilot should make a quick visual check that the area he intends to overfly is clear and that no other models are flying in the near vicinity; you should be watching for definite head movements as they scan the area.

The pilot should fly this manoeuvre at a safe height above eye level, but should not fly at such a height that the model cannot be clearly seen by both the pilot and yourself. Between three and five metres is the correct height band for this part of the test and the model **must** hover through the lazy eights, not fly through them. The pilot must be clear about the height at which they wish to fly before they take-off and you should discuss this with them in the pre-flight


briefing.

Having ensured that it is safe to start the manoeuvre, the pilot then takes the model off, rises smoothly to the flight level previously selected and hovers forwards for approximately 5 metres, stopping over the centre marker and hovering for about five seconds.


The pilot then turns the model 90_{\circ} , either left or right and, at the same time, slowly moves off forward at about a **walking pace** (but still in the hover). It is not required that the 90_{\circ} turn is completed before the model accelerates; the turn and acceleration may be one smooth manoeuvre although the pilot may treat them as separate manoeuvres if they wish.

The pilot moves away at his chosen height for a distance of about fifteen metres where they begin a turn the model smoothly through 180_{\circ} , flying forward in the hover all the time, and bringing the model back across in front of them. Without hesitation the model continues at the same speed in the new direction until it has flown past the pilot for a further fifteen metres to his opposite side. At this point he smoothly executes another 180° turn, causing the model to be now moving in the same direction as the first leg, again hovering across in front of the pilot.

The model does not stop at this point but it then repeats the events of the first lazy eight until two full eights have almost been completed and the model is near or over the centre ground marker.

During the lazy eights, you will be looking for a safe controlled flight throughout. The candidate should not lose or gain height significantly on the turns and should hover in a straight line between the turns with only sufficient drift on the model to prevent the it from moving either further away or, more dangerously, closer to himself during each leg of the manoeuvre. The **overall** length of each eight should be at least thirty metres and the model must be sideways on to the pilot each time it passes across their front. Some allowance can be made for a strong or gusty wind but the basic points of the manoeuvre must still be demonstrated.

At no time during the manoeuvre should the model be flying sideways. Throughout all the turns and straight flight, it must be flying forward in the hover and not 'crabbing' sideways.

The turns should be made by use of cyclic and rudder co-ordinated correctly, and must **not** be half pirouettes at the end of each leg. The flight pattern should be as the diagram in the BMFA Multi-rotor Certification Appendix document and not deviate significantly from it. The pilot should be equally competent to the left and to the right when flying this manoeuvre. If any significant difference in their flying skills shows up here then you should seriously consider whether they show the degree of competence necessary. It should be borne in mind that the manoeuvres in the test have been made reasonably simple, so that a fairly high degree of control can be demanded.

(i) At the conclusion of the two 'lazy eights', bring the multi-rotor to a halt sideways-on over the centre marker. Turn the model until the rear of the model is facing the pilot and hover for about five seconds. From this point fly the model to a landing on the original take off point.

At this point the model should be approaching the area of the centre marker, still at the chosen manoeuvre height, and the pilot should aim to smoothly decelerate the model to a stop in front of and sideways on to himself. The model is then turned to the heading it had before the lazy eights were started and hovered for about five seconds. At this point it should be over the centre marker, about five metres in front of the TOLP and hovering at the standard height.

The model is now flown to a landing at the original take-off point. The path taken is entirely at the discretion of the pilot and you should take the opportunity to watch carefully for a smooth well-thought-out and safe manoeuvre.

After landing, the candidate should shut down the engine/s and allow the rotor blades to stop turning before collecting the model to return to the pits.

Remember that electric models must be assumed to be 'live' until the flight battery has been disconnected and the handling of the aircraft by the candidate must reflect this during retrieval and in the pits area.

(j) Complete post flight checks as required by the BMFA Safety Codes.

These are clearly set out in the BMFA Members' Handbook and BMFA Multi-rotor Certification Appendix document, but you should pay particular attention to the correct Rx off, Tx off sequence and ensure that the frequency control system in use is cleared correctly.

(a) Carry out pre-flight checks as required by the BMFA safety codes and demonstrate an understanding of 'SWEETS'.

The candidate must demonstrate their understanding of risk assessing a site for flying by talking through SWEETS as described in the Member's Handbook. A candidate must be expected to be able to demonstrate how they have come to the decision it is safe to fly at the location, which must still be applied even if the site is an established flying site.

The candidate must demonstrate the model's failsafe, which as a minimum should be set as 'throttle to idle' upon loss of control signal. The candidate must ensure this is done safely following the guidance in the Member's Handbook. A candidate must be failed immediately if the candidate does not make the model 'safe' by means of either a suitable restraint or removing components that might spin uncontrollably such as propellers or blades.

If the failsafe does not work when tested for any reason, then the test must be considered a failure.

The pre-flight checks are laid out clearly in the BMFA handbook. Ask the candidate to go through their checks as if the test flight was their first flight of the day. Particular attention should be given to airframe, propeller, control linkages and surfaces.

Points to look for are that the candidate has a steady and regular ground routine, especially when starting and tuning the engine. Nerves should not play a part in the pits, and you should satisfy yourself that the candidate is in full control of what they are doing whilst preparing the multi-rotor for flight.

A tidy flight box and a neat ground layout makes a good impression and is to be expected from 'B' certificate candidates

A poor performance in this area is not direct grounds for failing the candidate but it is inevitable that you will be making mental notes of all aspects of the candidates performance and this is one that may have an effect on a real 'borderline' case.

Pay particular attention to the way the candidate uses the local frequency control system and make sure that they fully understand it and use the correct sequence appropriate to their model. For 35 MHz, this is usually 'get the peg, Tx on, Rx on'. For 2.4 GHz, the candidate should be aware of any local transmitter usage limitations and if a flight peg is required, it must be obtained before the usual Tx on, Rx on sequence. Some radio equipment and, occasionally, a specific model requirement requires that the Rx be switched on first and, if this is the case, the candidate should explain this clearly to you.

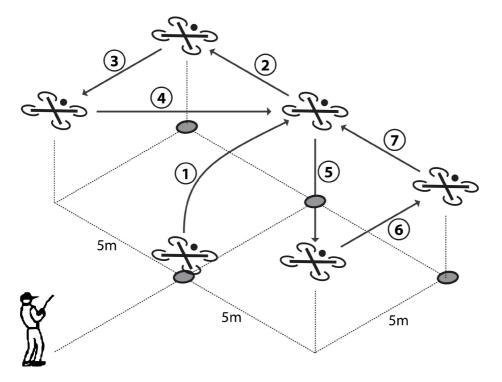
With electric powered models, take note that the candidate is aware that the model is 'live' as soon as the flight battery is plugged in and that they take appropriate safety precautions. If a separate receiver battery is fitted, the candidate should have the opportunity to check the operation of the radio equipment before the flight battery is plugged in.

Watch carefully and take note that the transmitter controls, trims and switches are checked by the pilot.

All candidates are required to be aware of the local the frequency control system and anyone who is required to use it but switches their radio on before doing so should be failed on the spot.

Electric powered models must be carried out from the pits area to a safe point before the flight battery is connected and they MUST be considered live as soon as the flight battery is plugged in. Great care should be taken at this point and any help available to the candidate should be

used in the interests of safety.


If there is no one else available then there is nothing to stop you aiding the candidate by, for instance, carrying the model to the test pad, etc., but any such actions must only be performed by you directly on the instructions of the candidate, you must not prompt them or carry out any actions of your own accord.

It is important that you talk these points over with the candidate in your pre-flight briefing.

(b) Perform one hovering bow tie

All sections of the manoeuvre are numbered and referenced to the manoeuvre drawing. The manoeuvre as described is flown anti-clockwise. However the direction of the flight may be either clockwise or anti-clockwise, at the discretion of the Examiner.

At all times in the manoeuvre, the model must be facing forward.

(1) The model starts on the TOLP, takes off and flies to a position over the centre marker where it is hovered for about 5 seconds.

(2) The model then hovers sideways to the left for about 5 metres to a position over the left inner marker where it is held and hovered for about 5 seconds.

(3) The model then hovers backwards for about 5 metres to a position immediately behind the left inner marker and level with the TOLP where it is held and hovered for about 5 seconds.

(4) The model then hovers diagonally forward and to the right to a position over the centre marker where it is held and hovered for about 5 seconds.

(5) The model then hovers diagonally backward and to the right to a position immediately behind the right inner marker and level with the TOLP where it is held and hovered for about 5 seconds.

(6) The model then hovers forwards for about 5 metres to a position over the right inner marker where it is held and hovered for about 5 seconds.

(7) The model then hovers sideways to the left for about 5 metres to a position over the centre marker where it is held and hovered for about 5 seconds.

This completes the manoeuvre. (Note:- the model remains in the hover.)

Hover height must be consistent throughout the manoeuvre and there should be minimum wandering away from the straight lines between the designated hovering points as the manoeuvre is flown.

(c) Perform one 4-point pirouette

From the previous manoeuvre, the manoeuvre is begun with the multi-rotor hovering over the centre marker, with the rear or the model facing the pilot and it is held in that position for about 5 seconds. The model is then rotated 90 degrees and held in the hover, sideways on to the pilot for about 5 seconds.

The model is then rotated a further 90 degrees in the same direction to have the front of the model facing the pilot and hovered in that position for about 5 seconds.

The model is then rotated a further 90 degrees in the same direction to the sideways on position to the pilot and hovered in that position for about 5 seconds

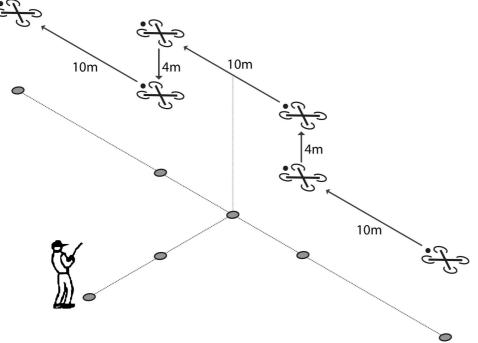
The model is then rotated a further 90 degrees in the same direction to the starting position, with the rear of the model facing the pilot and hovered in that position for about 5 seconds.

This completes the manoeuvre. (Note:- the model remains in the hover.)

The multi-rotor must rotate either clockwise or anti–clockwise for the entire manoeuvre. The Examiner will state which direction he wishes to see. The clear inference is that the candidate must be competent to perform the rotations in both directions prior to the test.

Hover height must be consistent throughout the manoeuvre with minimum wandering away from the Centre marker. The landing must be within the 2 metre diameter circle centred on the TOLP.

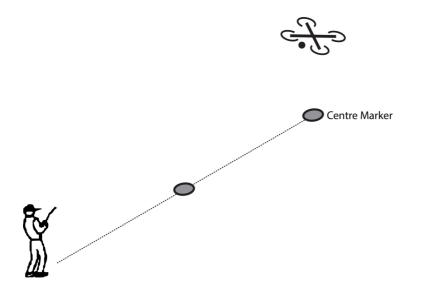
(d) Perform one 'Top Hat'


The candidate should manoeuvre the model from the centre marker to a position either hovering over the appropriate outer marker or approaching it at hovering pace along the line of the cross markers at 10 feet height. The model now moves forward at the normal hovering pace for 10 metres, stops and hovers for about five seconds then smoothly climbs vertically for 4 metres before hovering again for about five seconds. The candidate will now hover the model forward for 10 metres thus passing themselves sideways on and stops. The model again hovers for about five seconds then smoothly descends 4 metres until the skids are once again at 10 feet where it hovers for about five seconds. The model now moves forward for another 10 metres and passes over the opposite end outer marker which concludes the manoeuvre.

The model, still at approximately 10 feet, must then be hovered back to the take off/landing point and landed smoothly and steadily.

This completes the manoeuvre. (Note:- the model remains in the hover.)

The speed during the top hat should approximate to a normal walking pace, and the heading is constant throughout. The entry and exit to the manoeuvre is a test of the pilot's ability to correctly position the model. The model should not drift away from or toward the pilot significantly and the model should be under accurate control for the whole manoeuvre.


The manoeuvre may be flown either from left to right or from right to left and the direction is decided by the Examiner.

(e) Perform one twenty second nose-in hover.

The model should remain positioned over the Centre Marker, hovering at a height of approximately 10 feet. After a brief hover the model is turned so that the nose is towards the candidate and held steadily in the nose-in hover for at least twenty seconds. It is then turned back to a tail-in hover and then hovered backwards for approximately 5 metres and landed at the Take Off and Landing Point.

This completes the manoeuvre.

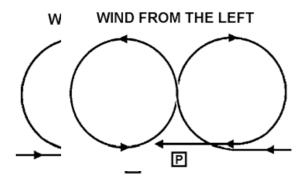
If the model is not completely nose in you should ask the pilot to correct it's position before starting the twenty second count. The multi-rotor should not drift significantly in any direction and height control should be good.

The landing must be within the 2 metre diameter circle centred on the Take Off and Landing Point.

(f) Take off and climb to a safe altitude.

The pilot must ensure that the route of his proposed flight path is clear before taking-off; watch for head movement as they scan the area. On taking-off, the multi-rotor will lift to a brief hover at about half a metre high. After again checking for obstacles and obstructions the pilot then climbs out at an angle greater than 45° to his selected safe height. When reaching this height the model can be transitioned into forward flight and the pilot can now position it for either a left or right hand circuit as he pleases.

During the climb out you will be looking for a positive approach to the manoeuvre, a constant angle and velocity. the pilot will also be looking for other traffic along the intended route.


(g) Fly a left hand rectangular circuit.

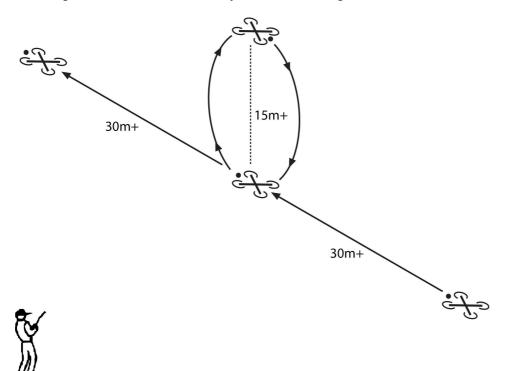
(h) Fly a right hand rectangular circuit.

The pilot can elect to fly these manoeuvres in either order. The circuits should be rectangular as shown in the manoeuvre diagrams. the longest legs of the circuit must extend over at least fifty metres. It is important that the initial turn on each circuit is made away from the flight line and the model must never pass behind the pilot.

On the run in to the first circuit and on completion of it, the model will be flying past the front of the pilot, and, for safety reasons, twenty or thirty metres out from the take off pad. Tell the candidate prior to the flight the line you wish them to follow.

You must ensure that the candidate is clear on this, the line will be set by the model flying in front of them on a heading which will be agreed before the flight (and this will not always be into wind), and passing over a set point. The first pass in front of the pilot is extremely important as it sets the standard height and line for the rest of the 'flying' manoeuvres.

This should be flown as a banked circuit manoeuvre (not from the hover) and as shown in the diagram. The crossover point must always be in front of the pilot and, after a run in at standard height and line, the model MUST be turned through ninety degrees in the first turn so that it is flying exactly away from the pilot.

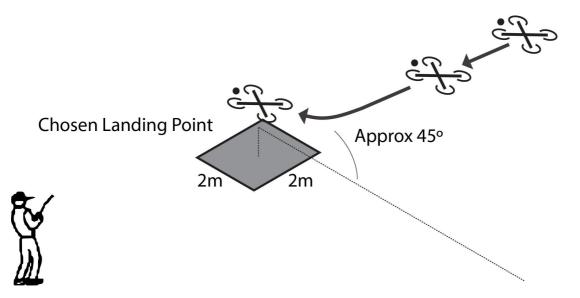

The first circle must also end with the model flying exactly away from the pilot, through the crossover point before it is turned into the second circle. Both circles should be of the same diameter as seen from the ground.

The main problems with this manoeuvre nearly always happen on the circle that is upwind of the pilot and if they do not adjust the angle of bank/turn rate to compensate they will either miss the crossover point by being a good way downwind, fly too near the pilots line, fly circles that are distorted or panic as the model accelerates towards them as it begins to come downwind and pull far too much bank (vertical!) to get the crossover point correct. This is not a sign that they have thought about the manoeuvre or practised it.

The second circle (3/4 circle actually) is rarely a problem. The manoeuvre finishes with the model flying at standard height and line across the front of the pilot, not with another turn away. The initial run-in to the manoeuvre may be either from left to right or from right to left and the direction is decided by the Examiner.

(j) Perform one loop.

The model should be flown out to a point between 30-50 metres past the pilot, then flown back past the pilot on standard height and line, at the point the model reaches in front of the pilot a loop of at least 15 metres diameter should be performed. A perfect loop is not required but the exit height and line should be very close to the original.


Skewing out is a sign that the model has not been trimmed correctly or that the model was not level at the start of the manoeuvre. The pilot should not get into this situation to start with but if they do then they must be able to compensate; if they cannot then you have to draw your own conclusions. Throttle is typically required at all times for a multi-rotor to manoeuvre, but watch that the throttle is controlled during the manoeuvre and penalise the pilot if they fly the manoeuvre at a constant high throttle setting.

The initial run-in to the manoeuvre may be flown either from left to right or from right to left and the direction is decided by the Examiner.

N.B. See Appendix 5 for guidance on completing this manoeuvre.

(k) Perform an approach at 45° to the vertical, landing within a pre-determined two metre square.

It is difficult to judge the angle of descent unless the model is almost sideways on to the pilot. For this reason the pilot should consider the planned approach path carefully and agree it with the Examiner during the pre-flight briefing. The direction of approach is the pilot's decision and everyone concerned with the test should be very clear exactly how the pilot will be attempting to fly the manoeuvre.

It is not a requirement that this manoeuvre should be entered from full forward flight so the pilot may set up the model in a steady hover or be moving forward in steady hovering flight at a minimum height of fifteen metres and at an appropriate distance away from the TOLP. The model should then sink at a constant rate with constant forward movement at an angle near to 45°, heading down towards the TOLP. Finishing this descent exactly over the TOLP is not required but the model should be no more than a metre or so out. The candidate is allowed a short hover at a height of around half a metre to make minor corrections before settling the model on the ground.

The landing should be made with the model on the same heading as on the 45[°] descent.

After landing, the candidate should shut down the engine and allow the rotor blades to stop turning before collecting the model to return to the pits.

(I) Complete post flight checks as required by the BMFA Safety Codes.

These are clearly set out in the BMFA Members' Handbook and BMFA Multi-rotor Certification Appendix document, but you should pay particular attention to the correct Rx off, Tx off sequence and ensure that the frequency control system in use is cleared correctly.

Having successfully completed the safety and flying elements of the test, the candidate, if they do not hold a current (post 1/1/2021) RCC must then answer correctly five mandatory questions based on legal compliance, as well as a **minimum** of five (A & BPC tests) or eight (B test) further supplementary questions on safety matters based on the BMFA Member's Handbook, associated Annexes, safety codes and local flying rules. Questions based on the Members Handbook Annex A (Flying displays) should only be asked for a B test.

Remember that on **no account** can a good performance on the questions make up for a flying test that you considered a failure. If you have failed the candidate's flying you should not even start to ask the questions. On the other hand the achievement scheme is a test of both flying ability and knowledge. It doesn't matter how well the candidate can fly, if they cannot answer the questions they should not pass.

Mandatory Questions

From January 2021 it is a requirement of all tests that candidates who do not hold a current (post 1/1/2021) RCC must answer correctly 5 questions taken from the list of mandatory questions based on legal aspects of model aircraft flying. (See Appendix) The examiner should only ask 5 questions and if the candidate does not know the answer to any question the test must be considered as a fail.

The examiner should indicate on the test form, either, which questions have been asked or the date the Registration Competency Certificate was passed. The candidate should present with their Registration Competency Certificate, either as a hardcopy or electronically. (The certificate clearly shows the date it was passed)

It is expected that examiners will select questions that are appropriate to the test being taken, however candidates should familiarise themselves with all of the questions on the list. Candidates are not expected to be "word perfect" with their answers but they should be able to demonstrate that they are fully aware of the legal controls for model aircraft flying.

Supplementary Questions

How many supplementary questions you should actually ask will depend on the circumstances at the time. For instance, if the candidate has performed well on the flying elements and answers the first five questions (eight for 'B' certificate) with confidence then you need go no further. An acceptable flight performance with perhaps some rough edges can be offset to an extent by the candidate performing well when answering the questions.

A candidate whose flying performance you found only just acceptable and who hesitates on the questions should be asked a few more than the minimum five or eight, and if you are not satisfied that they familiar with the BMFA Member's Handbook and the associated Annexes and safety codes, you should not hesitate to fail them.

As an examiner, however, you should prepare yourself thoroughly for any testing that you do and you may wish to sort out your own personal and private list of sensible questions. Don't forget that you can use any local rules which you know and which the candidate should be aware of.

Remember that the majority of questions you ask are to be BASED on the BMFA Member's Handbook and the associated Annexes and safety codes; you are not expected to ask them 'parrot fashion' and the candidate is not expected to answer that way either.

This opens up the possibility of asking a candidate if they can think of reasons behind specific rules. For instance, why is the club frequency control system operated as it is and what might go wrong? or why should models not be taxied in or out of the pits area? There is always the possibility that the examiner may use the supplementary questions to further explore the candidates understanding of the mandatory questions.

Administration

There are specific forms for Examiners to use during the Fixed Wing tests, and if you do not have one then a call to the BMFA Leicester office will have some in the post to you by return.

For the Basic Proficiency or 'A' certificate, examiners must clearly indicate on the pass forms which certificate has been awarded.

Examiners must also indicate in the area provided which 5 of the mandatory legal questions have been asked or the date the current (post 1/1/2021) RCC was passed.

Completed forms should be sent to the Leicester office within seven days of the test and, whilst they must be filled in by the Examiner, they may be sent in to the office by either the Examiner or the Candidate. Pass forms can also be submitted online by examiners via the Achievement Scheme website at <u>https://achievements.bmfa.uk/</u> under the menu item "The Tests". Passwords for the Achievement Scheme Website form submission are available to current registered examiners from the BMFA Office. You should take great care that all the details are filled in correctly, especially the successful candidates **NAME** and their **BMFA number** (this can save a great deal of confusion). If the candidate is not a BMFA member then it is especially important that you get their name and address correct and in full.

This is very important as what is seen on the pass form is what will appear on the final certificate. It is embarrassing for you to have to send one back to be re-done and it gives the candidate a definite impression of sloppy work by someone.

Please note that the A4 Certificate(s) and updated membership card are not routinely sent directly to the individual tested. However, the Leicester office will send the documents directly to the individual, upon direct and specific request from the Examiner concerned.

Appendix 1

Examiners and Candidates 'BPC' and 'A' Test Check List

The following is a short checklist of matters to discuss with the candidate taken from this document. This checklist can be used to ensure that all points raised above have been discussed with the pilot prior to any flights:

- 1 Has the candidate read: -The BMFA handbook, associated Annexes and safety codes Local site rules (if applicable)
- 2 Discuss whether the model is suitable in "these conditions"
- 3 Any "no fly zones" need to be identified
- 4 Remind candidate to talk you through anything that the helper may do for them as the test progresses
- 5 Agree any manoeuvre requirements that need to be pre-determined by the Examiner and Candidate prior to the commencement of the test flights
- 6 Clearly identify the take off / landing point and agree with the candidate the required hovering times that he will be flying and you will being looking for.

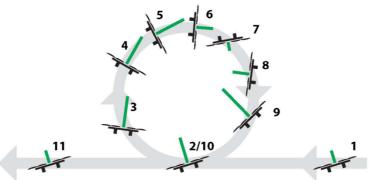
Appendix 2

Examiners and Candidates 'B' Test Check List

The following is a short checklist of matters to discuss with the candidate taken from this document. This checklist can be used to ensure that all points raised above have been discussed with the pilot prior to any flights:

- 1 Has the candidate read: -The BMFA handbook, associated Annexes and safety codes Local site rules (if applicable)
- 2 Discuss whether the model is suitable in "these conditions"
- 3 Any "no fly zones" need to be identified
- 4 Remind candidate to talk you through anything that the helper does for them as the test progresses
- 5 Agree any Airspace requirements that need to be pre-determined by the Examiner and Candidate prior to the commencement of the test flights
- 6 Discuss the various manoeuvres and any options that may be available so that there can be no misunderstanding during the test
- 7 In particular, does the candidate understand how you expect to see the model positioned with regard to the wind throughout the test.
- 8 Clearly identify the landing area and agree with the candidate the required landing pattern that he will be flying and you will being looking for.

'BPC' & 'A' CERTIFICATE (MULTIROTOR) Examiners Test Flight Check List


Cano	didates Name	BMFA Number	Date	Examiner		
	FLIGHT TASK		COMMENTS			
(a)	Carry out pre-flight checks as required by the BMFA Safety Codes.					
(b)	the multi-rotor at and then land.	r tail in over the take off point, with 10 feet, for about twenty seconds				
(c)	the multi-rotor slo	r for about five seconds then hover owly forwards for approximately five hover for about five seconds.				
(d)		otor slowly sideways for e metres, stop, and hover for about				
(e)	direction for appr	otor slowly sideways in the opposite oximately ten metres (five metres osition in front of the pilot), stop, and ve seconds.				
(f)	Hover the multi-re direction to bring	otor slowly sideways in the first it back to its original position in stop, and hover for about five				
(g)	Fly slowly backwa	rds, bringing the multi-rotor back to n over the take off point, stop, hover onds and land				
(h)	Take off and hover forward for about five metres, stopping over the centre ground marker and hover for about five seconds. Turn 90 degrees either left or right and fly forward to perform two 'lazy eights', each at least 30 metres in length. Each time the multi-rotor passes in front of the pilot it must be sideways on to the pilot and throughout the manoeuvre the model must be flying forward, not sideways.					
(i)	At the conclusion rotor to a halt abc the model tail in t	of the 'lazy eights', bring the multi- ove the centre ground marker, turn o the pilot and hover for about five to the original take off point, and				
(j)	Complete post-flight checks as required by the BMFA Safety Codes.					
Answer five questions from the list of mandatory questions on legal aspects of model aircraft flying. Answer satisfactorily a minimum of five questions on safety matters from the BMFA Member's Handbook, associated						
Anne	Annexes, safety codes and local flying rules.					

Appendix 4

'B' CERTIFICATE (MULTIROTOR)

Examiners Test Flight Check List

Candidates Name		BMFA Number	Date	Examiners		
FLIGHT TASK		COMMENTS				
(a) Carry out pre-flight checks as required by the BMFA Safety Codes						
(b)	 Perform one hovering 'bow tie, with the multi-rotor at 10 feet. 					
(c)	c) Perform one four-point pirouette, with the multi-rotor at 10 feet.					
(d)	 Perform one 'Top Hat', with the multi- rotor starting at 10 feet. 					
(e)						
(f)	(f) Take off and climb to a safe altitude					
(g)	(g) Fly a left rectangular hand circuit					
(h)	h) Fly a right rectangular hand circuit					
(i)	Perform one figure eight at circuit height					
(j)	Perform one loo	р				
(k)	Perform an approach at 45° to the vertical, landing within a predetermined two metre square					
(1)	Complete post-f the BMFA Safety	light checks as required by / Codes				
	Answer five questions from the list of mandatory questions on legal aspects of model aircraft flying.					
	Answer satisfactorily a minimum of eight questions on safety matters from the BMFA Member's Handbook, associated Annexes, safety codes and local flying rules.					

Technique

- 1 Approach with a nice steady throttle to maintain a constant height, but flying forwards with enough speed to begin the loop.
- 2 3 In the first quarter of the loop throttle is used to start the multi-rotor around a circular path, with only a small amount of elevator to maintain shape.
- 4 6 In the second quarter of the loop, between 4 and 6 the multi-rotor will rotate to a little under 90°. During these stages throttle is used to essentially drive the multi-rotor over the top part of the loop.
- 6-8 In the third quarter of the loop the multi-rotor is rotated a full 180° while using between 10-25% throttle. At no point should the throttle be allowed to drop to zero or control can and will be lost.
- 9 10 In the final quarter of the loop the focus is on using throttle to catch the multi-rotor while using elevator to finish the shape of the circle and fly out.
- 11 Aim to continue to carry the same speed on exit.

Common Mistakes

1 The loop is not round.

Often caused by not using enough throttle at stages 4-6 or over relying on elevator only.

2 Significant height loss from starting height.

Often caused by not rotating quickly enough in stages 6-8 or applying enough throttle in stage 9.

3 **Quad stalls and does not _y out of the loop** Often caused by over rotating at step 9 and not allowing the multi to gain forward momentum.

NB: This is a rough guide that should be adapted to suit your own multi-rotor

<u>Appendix 6</u>

May 2021

- 1. Can you fly your model aircraft or drone out of sight behind trees?
 - No, because you must be able to see your aircraft at all times.
- 2. You should never fly above what height without appropriate permission or an authorisation?
 - 400ft
- 3. What is the main reason for not flying above 400ft without permission or an authorisation?
 - Because the airspace above 400ft is used by other aircraft.
- 4. When do you need permission from an airport to fly a model aircraft or drone?
 - When you wish to fly in a flight restriction zone.
- 5. If you are flying your glider, which has a mass of more than 7.5kg but less than 14kg, from the top of a 150 ft high hill, how high can you fly from where you are standing?
 - 400ft
- 6. You arrive at a site and want to get ready to fly your model aircraft. What four things must you check?
 - That the weather is going to be suitable for your flight.
 - That you are 'fit to fly'
 - That you make sure there are no airspace restrictions where you intend to fly.
 - That your aircraft is in a safe condition to complete the flight safely.
- 7. When can you fly your model aircraft or drone using First Person View equipment without a competent observer?
 - If you are flying at a drone racing event within a 'sterile area' and you do not fly above 160 feet (50m).
- 8. You are flying your model aircraft or drone using FPV equipment accompanied by a competent observer, what four conditions must you comply with?
 - The take-off mass of your aircraft must be less than 3.5kg
 - You must not fly above 1000 feet
 - You must not fly above 400 feet if you are flying a rotorcraft with more than one propellor.
 - Your competent observer must maintain direct unaided visual contact with your aircraft.

- 9. You are flying your model aircraft or drone safely at a safe height but there are other people in the vicinity. You notice an air ambulance flying in your direction. What should you do?
 - Quickly fly your aircraft out of the way of the air ambulance and either wait or land safely.
- 10. You want to fly in an empty field near to an airport. The field is outside the airport boundary fence, so is it OK to fly there?
 - You must check that the field is outside the airport's flight restriction zone before you fly.
- 11. Who is directly responsible for the safe operation of an aircraft?
 - The Remote Pilot
- 12. Before any flight can take place in the Flight Restriction Zone of a Protected Aerodrome, permission must be obtained from whom?
 - The Air Traffic Control unit or owners of the Protected Aerodrome
- 13. Whilst flying, as a Remote Pilot, you should always comply with what two conditions?
 - Comply with the limitations of the Article 16 Authorisation or CAP 722
 - Comply with any airspace restrictions
- 14. Whilst flying, as a Remote Pilot, you should always avoid what?
 - Any risk of collision with any manned aircraft
 - Flying close to or inside any area where an emergency response is taking place, without permission to do so
 - Continuing a flight if it may pose a risk to other aircraft, people, animals, environment or property
- 15. The Article 16 Authorisation stipulates that model aircraft with a Maximum Take Off Mass between 250g and 7.5kg cannot be operated within what separation distances?
 - Within a horizontal distance of 30m of assemblies of people.
 - Within 30m of any uninvolved person (this may be reduced to 15m for take-off and landing).
- 16. The Article 16 Authorisation stipulates that model aircraft with a Maximum Take Off Mass between 7.5kg and 25kg cannot be operated within what separation distances and above what height?
 - Within a horizontal distance of 50m of assemblies of people (this may be reduced to 30m for take-off and landing).
 - Within 30m of any uninvolved person
 - At an altitude of more than 400' without permission from the CAA.
- 17. Serious Incidents or other Occurrences must be reported to the CAA as a condition of our Authorisation, if they involve any of what four circumstances?

- Incidents involving manned aircraft.
- Operating above 400 feet
- Operating less than 50m from uninvolved people.
- Any instances of flight beyond the visual line of sight of the Remote pilot.
- 18. Any Model Aircraft or drone Operator making use of the Article 16 Authorisation must ensure that they comply with what three requirements?
 - They must be registered with the CAA.
 - They must clearly display their Operator ID on (or in) their aircraft.
 - They must be a current BMFA member.
- 19. The Article 16 Authorisation permits you to give a 'trial flight' to a non-member providing you meet what three conditions?
 - They are under your direct instruction and supervision.
 - You meet the competency requirements and a valid Operator ID is on the aircraft.
 - You must be a current BMFA member.
- 20. What does the Article 16 authorisation state with regards to the dropping of articles from a model aircraft or drone?
 - The Remote pilot must not cause or permit any article or animal to be dropped from an unmanned aircraft so as to endanger persons or property.

Appendix 7

Multi-rotor Types

Multi-rotors come in numerous variations, sizes and formats, not all of which will be suitable for the multi-rotor tests. Some use servos to tilt motors, but these should not be confused with tilt shift aircraft.

Bi-rotor

These have two motors only and two servos. Each motor is mounted on a servo-controlled pivot. These are the least stable of the multi-rotors and are therefore not recommended to use for either test.

Tri-rotor / Tricopter

As the name suggests these have 3 motors, typically spaced in a Y-shape, with the rear single motor being mounted on a servo-controlled pivot.

Quad-rotor / Quadcopter

These are likely to be the most common model used, using four motors and no servos. (This excludes variable pitch models mentioned further down this list) They can be safely flown in either a plus or cross format, this will boil down to what the individual pilot feels is easier to orientate and no preference should be given to either. There will be two motors spinning clockwise and two counter clockwise to overcome the torque effect. By slowing a pair of motors down and speeding up the other pair, the torque effect is used for yaw.

Hex-rotor / Hexacopter

With six motors, these can either have the motors spaced out evenly in a circle or doubled up in a Y-format. Again no servos are used for this format. Hex-rotors offer no more stability than a quad, but do offer an ability to keep flying in the event of a certain motor failures. These will have three motors spinning clockwise and three counter clockwise, when set up as a Y-shape, there will be one motor of each direction on each arm.

Octo-rotor / Octocopter

As per the hex-rotor, these can be set up with all motors in a circle, or set up with double motors as per the plus or cross quad-rotors. As with hex-rotors these offer more resistance to motor failures. These will have four motors spinning clockwise and four counters clockwise. When set up as a quad-rotor format there will be one motor of each direction on each arm.

Variable Pitch Multi-rotors

These can be any format from above, but are most typically done as quad-rotors as this tends to be the best balance between size and aerobatic performance. In the quad-rotor format a single motor drives four variable pitch rotors, which are intern controlled by servos. This variable pitch approach allows for a motor idle up being set and sustained inverted flight to be achieved.

Reverse Direction Multi-rotors

Another recent development has seen multi-rotors with reversible speed controllers / motors, this allows for sustained inverted flight as the motors reverse when inverted.

Multi-rotor Flight Modes

All multi-rotors will require a flight controller for operation, a device which contains a three axis gyro, much like a flybarless helicopter, but with the additional task of taking the radio control signals (Throttle, Aileron, Elevator and Rudder) and converting them in to motor or servo outputs. In order for a multi-rotor to fly, the flight controller will be making constant adjustments to all parts of the flight train, however it can also offer additional flight modes.

It should be noted that multi-rotors of all formats and sizes could be fitted with none or all of the following flight modes as part of the main flight controller or in separate units.

Manual (can be referred to as FULL ACRO)

This is the only flight mode acceptable for use in the tests, as in this mode the multi-rotor is not self-stabilised. A continued aileron input for example will see the model continue to rotate around the aileron axis. An easy demonstration to request from the pilot to confirm this is the flight mode in use is to ask the pilot to apply a small aileron input and then release the stick to centre. The model should continue along the new aileron trajectory and not self-level, requiring opposite aileron input to stop the slide and return the model to level.

Attitude / Stabilised Mode

Often referred to as ATTI mode or STAB, this is the first of the auto pilot modes. In this mode the model will self-level when the sticks are centred and the model will simply drift with the wind if no input is given. In addition full aileron or elevator will only result in the model reaching a maximum tilt of 30-40 degrees and never tipping over (a mode also referred to as Horizon).

GPS Mode

Occasionally referred to as Loiter Mode, the model uses GPS to lock its position via satellite. The model will often still accept flight control inputs and behave much like in ATTI Mode, however centering the sticks will see the model stop still in its position. In this mode the model will also resist external forces such as wind and make corrections to stay still. It is also possible with some GPS equipped models to set waypoints and send the model on its way completely autonomously or have the model 'Return to Home'.

Compass Mode

Often also referred to as CAREFREE mode. This mode works by setting an artificial North. With the model facing in a set direction, entering compass mode will see the model travel along its new North from forward elevator input irrelevant of which way the model is now facing. Essentially this allows the model to be pirouetted while always travelling in the same direction from forward elevator input. It should be noted that the compass will typically take the front of the model as its new North when activated, so it is possible for forwards on the stick to become left, right or backwards, depending on which way the model was facing when activated.

Altitude Mode

Some models are also capable or maintaining their altitude.

Rate Mode

Often multirotors have a minimum throttle setting, or tick-over. In rate mode the model's throttle can be reduced to zero when live and/or in flight, ie motors stopped, however the motors are still live and will activate if triggered by the gyro. This is a safety concern if anyone picks up a live model in this mode, as the propellers will most likely activate.

Multi-rotor Pre & Post Flight Checks

(A) Checks before daily flying session.

1. Check that all rotor blades are in good condition with no damage and securely attached to the motors or blade grips.

The RCAS – Multi-Rotor Certificates

- 2. Check for loose or missing nuts and bolts.
- 3. Check all ball links for slop and change as necessary.
- 4. Check there is no backlash in the drive system apart from gear backlash, which should not be excessive.
- 5. Check that servos are secure.
- 6. Check that the receiver aerial is secure and in good condition with no chafing or damage.
- 7. Check that the flight controller is secure and that all aerials including GPS are secure and orientated in the correct direction.
- 8. Check all transmitter switches are in the right positions.

(B) Checks before and after each flight.

- 1. If the multi-rotor suffers damage or a heavy landing, recheck all of (A) above.
- 2. Check all controls before starting especially for binding links or slowing servos.
- 3. Check for vibration and eliminate before flight.
- 4. Check that all wiring is secure and cannot become entangled with any moving or rotating part, especially the receiver aerial.
- 5. Before starting insure all switches are in the correct position for takeoff and the correct flight mode selected before **EVERY** flight.
- 6. If planning to use GPS at any point during the flight, confirm that you have a suitable lock before taking off. (Method for this will vary from unit to unit, but is typically by way of a flashing indication LED)
- 7. Are the multi-rotors arms secure, especially in the case of collapsible or folding air frames.

Multi-rotor Additional Safety Considerations

The following is a list of additional scenarios that multi-rotors can create, but is in addition to standard procedures for electric or I/C models and general safe flying practices. Due to the fast changing nature of multi-rotors this list should not be considered definitive.

Different multi-rotors will use a vast selection of propellers from soft plastic, through wood and up to carbon. In all cases the propeller should be suitable for the type and power output of each motor and metal propellers must never be used.

Many multi-rotors use the frame as a power distribution board, it is important to insure that all wires are secure and that there is no risk of short-circuiting. Multi-rotors can create more RF interference than the average model aircraft and although the use of ferrite rings might not be necessary with 2.4Ghz radios it is advised to carefully consider the positioning of any and all aerials and wiring.

Multi-rotors are predominantly electric, so all standard controls of electric models should be applied, especially the consideration that the model is live the moment it is connected. As a result models should not be connected in pits areas or car parks.

Models with GPS can typically be programmed to follow waypoints, at no point may the craft become fully autonomous, in other words the pilot should be in control as all times and capable of taking control and overriding any pre-programmed flight commands with the transmitter. The same applies to the use of the 'Return to Home' feature.

Models using Waypoints or Return to Home must consider the flight path of the model and insure no obstacles will interfere with the model, as this type of flight is often 'As the crow flies'.

Careful consideration must be taken with models with GPS and 'Return to Home' features as to where they are connected and or started, as this is often the 'Return to Home location' and

The RCAS – Multi-Rotor Certificates

must be set as a safe area, e.g. a safe distance in to the runway and not the pits or car park.

It is not easy to safely restrain a multi-rotor so when testing the failsafe it is necessary to remove the propellers.

GPS is typically very good at holding a model to within inches of its position, but is only truly accurate to within 5m of latitude, longitude and altitude.

GPS can take time to 'find itself', especially on the first initialization of the day, so time should be given to achieve a safe and stable lock before **EVERY** flight.

A descending multi-rotor is flying through its own prop wash and will often 'wobble' as it descends. Trying to descend too fast can cause a model to suffer too much wobble creating a tip stall. A great method to avoid excessive wobble is to descend while travelling, e.g. a 45deg descent.

A multi-rotor with too much gyro gain will oscillate in the air, where as too little will create a model that rocks or drifts excessively.

A multi-rotor that appears to "toilet bowl" (drifting around in a circle) is typically searching for a GPS lock.

Models with GPS that are armed too quickly can shoot off trying to return to their last known GPS position. This again refers to arming and flying before GPS is fully engaged. **Pre-test considerations / checks for examiners.**

The following is a guide for examiners to assess that a pilot truly understands the aircraft they are flying and the modes it operates in.

Flight modes:

As mentioned in the earlier section of this document, multi-rotors can have numerous flight modes. The pilot being tested should be able to clearly explain what each mode is on their model and what switch it is assigned to. They should also be able to explain how the model will react in each mode and any special considerations that should be made for each mode. Again, you can refer back to the earlier section on flight modes for reference, but here are some key things to consider for each mode that the pilot should understand.

Things that need to be considered for each mode:

GPS:

GPS does not work instantly when a model is armed and may take time to arm, especially on the first flight. All GPS equipped models will have a warning LED indicating the GPS Status, i.e. is it locked, how many satellites it's reading etc. Also many will not work indoors, under trees or near power lines. Failing to wait for a successful GPS lock can result in a model struggling to hold location or even a fly away. GPS units typically have an orientation and a pilot should be able to demonstrate that is in the right position/angle.

RTH – Return To Home:

A pilot using RTH should understand exactly when the model sets its home position. In some cases this is as soon as the battery is plugged in, whereas on others it is when the model is first armed for flight. In either case, the pilot should explain this for their model and arm the model in line with this.

If equipped with RTH the pilot should be able to explain what will happen in this mode. Many models will stop where they are, gain height, then fly in a straight line as the crow flies to their RTH point before then entering a slow decent to landing. Others may simply fly back at the

The RCAS – Multi-Rotor Certificates

altitude they are starting at and some may then only loiter at a set height once reaching the RTH point and not land.

The pilot should also understand the legal implications of RTH. At this moment in time, RTH is not a legal option for failsafe (This is currently being discussed with the CAA and may change). RTH can only be used as a controlled mode of flight, i.e. the pilot can deliberately put the model in a RTH state, but then instantly regain control at any time. RTH is not legal if the model decides to enter RTH mode on its own due to say loss of signal or low battery, or if the pilot cannot re-take control once RTH's is initiated.

Compass Mode / Carefree Mode:

Carefree mode as mentioned earlier sets an artificial north for the model. The pilot should mainly be aware of the risk of setting an unusual or uncomfortable attitude for this mode. I.e. setting the mode while flying towards yourself will result in a model being set in a permanent 'nose-in' attitude. The pilot should be able to explain how to either exit this mode to normal flight or what they would do if this was accidentally set in flight.

Attitude / Stabilised Mode

This is mostly an idiot proof mode, however some of the earlier control units required the model to be positioned horizontally at point of arming to set the level point, i.e. arming with the model at 20deg will see the model always wanting to level to that angle in flight. As with many gyros devices, many control units don't like to be moved during the initial arming.

Gain adjustment.

Even a basic board that is only capable of manual flight mode can still have a switch assigned to adjust the gyro gains, essentially like a helicopter tail gyro having heading hold and rate mode. On a multi-rotor the behaviour difference between the two could best be described as high and low rates. With the gyro gain high the multi will be more docile / sluggish, where as with the gain dialled down it will be twitchy and able to rotate faster. A pilot should be willing to demonstrate to an examiner that both modes are still manual mode and that the 'low rate' mode is not in fact self-levelling.

Motor Arming:

Many control units have a safe mode, where the motors will not react to control inputs, requiring the transmitter to first use some set positions. For example this might be throttle down and full right rudder to arm, with throttle down and full rudder left to disarm.

Failsafe:

Multi-rotors are capable of various levels of failsafe, from the basic motors to idle minimum, to automatic flight modes. Such self flight modes are; **auto land**, where the multi-rotor self stabilises and goes in to a slow decent and **RTH** (return to home), in this mode the multi-rotor will typically climb by a set amount, turn and fly straight home to its initial arming point and land. Consideration should be taken in RTH mode as the craft typically flies in a straight line, so any obstacles in between such as trees or people may be hit.

Examination question suggestions:

Flight mode: The pilot should be able to explain all their flight modes and how the aircraft will behave in each mode.

Failsafe settings: The pilot should be able to explain what will happen on loss of signal, i.e., standard motors to idle or slow decent or return to home. This can also be linked to switches.

Arming sequence: Most multi-rotors have a set stick/switch position to start or stop motors.

Switches: The pilot should be able to clearly explain what flight modes are assigned to each switch.

The RCAS – Multi-Rotor Certificates

Specific craft considerations: A pilot should be aware of specific behaviours relevant to their multi-rotor. I.e. a motor failure on a bicopter, tricopter or quad will result in a crash, however on a hexacopter or octocopter the model will typically begin to pirouette, but still fly.

BRITISH MODEL FLYING ASSOCIATION SMAE Ltd Chacksfield House, 31 St Andrews Road, Leicester, LE2 8RE Telephone - 0116 2440028 Fax - 0116 2440645 E-Mail - admin@bmfa.org Website - http://www.bmfa.org